Ultrastructural study of transcription factories in mouse erythroblasts.

نویسندگان

  • Christopher H Eskiw
  • Peter Fraser
چکیده

RNA polymerase II (RNAPII) transcription has been proposed to occur at transcription factories; nuclear focal accumulations of the active, phosphorylated forms of RNAPII. The low ratio of transcription factories to active genes and transcription units suggests that genes must share factories. Our previous analyses using light microscopy have indicated that multiple genes could share the same factory. Furthermore, we found that a small number of specialized transcription factories containing high levels of the erythroid-specific transcription factor KLF1 preferentially transcribed a network of KLF1-regulated genes. Here we used correlative light microscopy in combination with energy filtering transmission electron microscopy (EFTEM) and electron microscopy in situ hybridization (EMISH) to analyse transcription factories, transcribing genes, and their nuclear environments at the ultrastructural level in ex vivo mouse foetal liver erythroblasts. We show that transcription factories in this tissue can be recognized as large nitrogen-rich structures with a mean diameter of 130 nm, which is considerably larger than that previously seen in transformed cultured cell lines. We show that KLF1-specialized factories are significantly larger, with the majority of measured factories occupying the upper 25th percentile of this distribution with an average diameter of 174 nm. In addition, we show that very highly transcribed genes associated with erythroid differentiation tend to occupy and share the largest factories with an average diameter of 198 nm. Our results suggest that individual factories are dynamically organized and able to respond to the increased transcriptional load imposed by multiple highly transcribed genes by significantly increasing in size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The function of the bcl-x promoter in erythroid progenitor cells.

The protein Bcl-x(L) is essential for survival of erythroid progenitor cells, and it increases substantially during late erythrocyte differentiation due to an increase of mRNA. We mapped the transcription start sites of bcl-x mRNA in mouse and human erythroblasts, and we analyzed the function of the mouse bcl-x promoter by transient and stable transfection assays in a mouse erythroid cell line ...

متن کامل

Reactive oxygen species level, mitochondrial transcription factor A gene expression and succinate dehydrogenase activity in metaphase II oocytes derived from in vitro cultured vitrified mouse ovaries

The aim of this study was to evaluate the effects of ovarian tissue vitrification and two-step in vitro culture on the metaphase II (MII) oocyte reactive oxygen species (ROS) level, mitochondrial transcription factor A (TFAM) expression and succinate dehydrogenase (SDH) activity. After collection of neonatal mouse ovaries, 45 ovaries were vitrified and the others (n = 45) were...

متن کامل

An Ultrastructural Study of Early Morphogenetic Events during the Establishment of Fetal Hepatic Erythropoiesis

Morphogenetic events are described which characterize early stages of the interaction between mesenchyme and expanding epithelial cell cords derived from the hepatic endodermal diverticulum in the C57BL/6J mouse. This interaction culminates in the differentiation of hepatic epithelial and hematopoietic tissues. No basement membrane separates the presumptive hepatic epithelial cells from the adj...

متن کامل

Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation.

Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlat...

متن کامل

GATA-1 genome-wide occupancy associates with distinct epigenetic profiles in mouse fetal liver erythropoiesis

We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2011